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Abstract
Following an earlier derivation by Miller, we give a concise derivation of
the Herman–Kluk propagator that fully exploits the symplectic structure of
the problem. We also show directly that the version of the thawed Gaussian
semiclassical propagator obtained by Baranger and co-workers is equivalent to
the linearized Herman–Kluk propagator.

PACS numbers: 03.65.−w, 03.65.Sq, 45.20.Jj

1. Introduction

Semiclassical approximations to quantum propagators have been widely applied to introduce
aspects of quantum dynamics into the motions of systems near the classical limit [1–16].
Early applications [3, 4] of semiclassical methods to problems of chemical dynamics used
the Van Vleck propagator [1, 2, 7]. Direct use of the Van Vleck form, however, leads
to well-known difficulties associated with the trajectory root search problem and possible
divergence of the prefactor at conjugate points. It is moreover necessary to keep track of the
Morse–Maslov index phase factor associated with the passage of classical trajectories through
conjugate points [7, 17]. Most recent applications of semiclassical mechanics have therefore
exploited initial value representations (IVR) [18, 19] of the propagator [5, 6, 9, 11–14,
16, 20–27]. Using the IVR, it is possible to propagate trajectories specified by an initial
coordinate–momentum pair, rather than initial and final coordinate values. The Herman–Kluk
(HK) representation of the propagator in particular has been widely applied [5, 6, 12, 13,
16, 24]. The HK propagator is a frozen Gaussian [28] IVR approximation to the propagator
in the coherent state representation [10, 29, 30]. In addition to providing a semiclassical IVR
for the propagator, the HK approximation has the useful property that the prefactor is always
well behaved with magnitude never zero or divergent. The appropriate phase of the prefactor
(branch of the square root function) is therefore easily determined through continuity [21, 23].
Generalizations of the HK prefactor have been discussed by Hu and co-workers [31, 32].
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The original derivation of the HK frozen Gaussian propagator [5] has been criticized by
Baranger et al [14], who argue that certain deformations of integration contours in complex
phase space invoked in the HK derivation are not necessarily valid. Baranger et al contend that
this objection also holds for the derivation by Grossmann and Xavier [33]. Derivations of the
HK propagator using different approaches have subsequently been given by Miller [34, 35]
and by Shalashilin and Child [24], while Kay has discussed general integral representations
of the semiclassical propagator [16, 21], of which the HK propagator is a particular case (see
also [31, 36]).

Miller’s second derivation of the HK propagator [35] is based on an expansion in terms
of a time-dependent basis of Gaussian coherent states, where the members of the (continuous,
overcomplete) coherent state basis are parametrized by phase points zt , with zt evolving from
z at time t = 0 under the classical time evolution generated by the system Hamiltonian.
While this expansion is in principle exact, Miller has shown that an assumption of slow
variation of the expansion coefficients with zt combined with a local quadratic expansion of
the Hamiltonian yields, upon suitable linearization of the integrand, an equation of motion
for the expansion coefficients that is identical with that of the HK prefactor [35]. An elegant
treatment of the HK propagator by Shalashilin and Child based on their coupled coherent
state approach [25, 37, 38] employs complex combinations of (real) phase space coordinates
and associated complex monodromy matrices, and makes extensive use of matrix identities
resulting from the symplectic property of the monodromy matrix [25].

An intriguing feature of the HK propagator is the presence of the determinant of the
complex matrix Λ∗ (see below) in the prefactor. This prefactor presumably compensates for
the fact that, in contrast to the thawed Gaussian approximation (TGA) [30, 39], the coherent
states in the expansion basis are ‘frozen’ and do not distort or spread as they move along the
guiding classical trajectory. It is therefore interesting to note that the determinant of the matrix
Λ appears in the coherent state matrix elements of the metaplectic operator associated with a
linear canonical transformation (symplectic matrix) [30]. The coherent state matrix element
of the metaplectic operator associated with the monodromy matrix for the classical trajectory
from z → zt in turn appears in the form of the thawed Gaussian propagator proposed by
Littlejohn [30] (see also [40]).

The purpose of the present paper is to point out that additional insight into the derivation
and structure of the HK propagator and its relation to the TGA is obtained by exploiting
the connection with the metaplectic operator and related matrix identities [40]. Specifically,
the matrix Λ, which is obtained by taking complex linear combinations of blocks of the
real monodromy matrix S, arises naturally without the need to explicitly invoke complex
combinations of real phase space variables, essentially as a result of the interplay between the
real and imaginary parts of the exponents of coherent state overlaps.

After a review of notation and definitions (section 2), we reformulate Miller’s derivation
of the HK propagator to fully exploit the underlying symplectic structure (section 3). Our
derivation makes it clear that the HK propagator is by no means limited to Hamiltonians of the
form H = T (p) + V (q). We then show (section 4) that the linearized coherent state matrix
element of the HK propagator is identical to the propagator in the TGA in the form given
by Littlejohn [30]. This form is also identical (with a couple of modifications) to the result
obtained by Baranger et al [14] for one-dimensional systems.

2. Notation and definitions

In this section, we briefly establish notation and essential definitions. Real 2N -dimensional
phase space coordinate vectors are denoted by z ≡ (q,p), where q and p are N-dimensional
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Cartesian coordinate and momentum vectors, respectively. Hamilton’s equations are written
as

ż = J · Hz (1)

with J the 2N × 2N fundamental matrix,

J =
[

0 +1N

−1N 0

]
, (2)

and Hz the vector of derivatives of the classical Hamiltonian H(z) with respect to phase space
coordinates z. The Hamiltonian H(z) is not restricted to be of the form H(z) = T (p)+V (q).
Note that J̃ = J−1 = −J , where J̃ is the transpose of J . The symplecticity condition on a
2N × 2N matrix S is

S̃JS = J . (3)

If the matrix S is symplectic then so are the following: S−1, S̃−1, S̃. The symplectic matrices
we consider here are monodromy (stability) matrices associated with classical trajectories
from z → zt . The matrix S is partitioned as follows:

S =
[
∂zt

∂z

]
=

[
Sqq Sqp

Spq Spp

]
≡

[
A B

C D

]
. (4)

Condition (3) implies

C̃A = ÃC (5a)

D̃B = B̃D (5b)

−B̃C + D̃A = ÃD − C̃B = 1N, (5c)

with a similar set of relations following from the condition SJS̃ = J . The inverse matrix
S−1 is

S−1 =
[

D̃ −B̃

−C̃ Ã

]
. (6)

The 2N × 2N complex matrix

W = 1√
2

[
1N i1N

i1N 1N

]
(7)

is both symplectic and complex symmetric. A complex symplectic matrix Sc is obtained by
similarity transforming S with W ,

Sc = WSW −1 =
[
Λ∗ −iΓ∗

iΓ Λ

]
, (8)

where we have defined the complex N × N matrices [30]

Λ ≡ 1
2 [(A + D) + i(B − C)] (9a)

Γ ≡ 1
2 [(A − D) − i(B + C)]. (9b)

Symplecticity of Sc implies

ΓΛ̃ = ΛΓ̃ (10a)

Λ∗Γ̃∗ = Γ∗Λ̃∗
(10b)

Λ∗Λ̃ − Γ∗Γ̃ = ΛΛ̃
∗ − ΓΓ̃

∗ = 1N, (10c)
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while S−1
c is

S−1
c = WS−1W −1 =

[
Λ̃ iΓ̃

∗

−iΓ̃ Λ̃
∗
]

. (11)

The coherent state centred at phase point z = (q,p) is defined as [30]

〈x|z〉 = 〈x|T̂ (z)|0〉 (12a)

= 1

(πh̄)N/4
exp

{
1

h̄

[
−1

2
(x̃ − q̃) · (x − q) + ĩp ·x − i

2
p̃ · q

]}
, (12b)

where T̂ (z) is the Heisenberg translation operator [30] and |0〉 is the fiducial state (harmonic
oscillator ground state) centred at z = 0 expressed in terms of suitably scaled coordinates.
Our phase convention for coherent states is determined by the action of the operators T̂ (z)

[30]. Herman–Kluk [5] and many other authors use a different convention

|z〉HK = |z〉 e−ip · q/2h̄ (13)

so that the classical action R(z; t) for trajectory z → zt appearing in the phase of the HK
propagator [5] must be modified to have the symmetrical form

�(z; t) = R(z; t) − 1

2
[pt · qt − p · q] (14a)

=
∫

dt L − 1

2
[pt · qt − p · q] (14b)

=
∫

dt

[
1

2
(p · q̇ − q · ṗ) − H

]
. (14c)

The overlap between coherent states |z〉 and |z′〉 is

〈z′|z〉 = exp

[
− 1

4h̄
(z̃′ − z̃) · 12N · (z′ − z) +

i

2h̄
z̃′ · J · z

]
. (15)

Given a symplectic matrix S, we define the real, symmetric and positive definite matrix

X = 12N + S̃S. (16)

The matrix X factorizes as follows (cf appendix C of [26]; see also [41, 42]):

X = U · V (17)

with

U =
[

iΛ̃ −iΛ̃
∗

Λ̃ Λ̃
∗

]
, V =

[
C − iA D − iB
C + iA D + iB

]
(18)

and

X−1 = V −1 · U−1 = 1

2

[−B̃ + iD̃ −B̃ − iD̃
Ã − iC̃ Ã + iC̃

]
.
1

2

[
−iΛ̃

−1
Λ̃

−1

iΛ̃
∗−1 Λ̃

∗−1

]
. (19)

Using the above results we can derive the identity

P ≡ −(1 + iJ)SX−1S̃(1 + iJ̃) = +

[−Γ∗Λ−1 iΓ∗Λ−1

iΓ∗Λ−1 +Γ∗Λ−1

]
. (20)

The matrix P is manifestly symmetric, and is important in the symplectic formulation of
wavepacket propagation [30, 40].
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A symplectic matrix S, which is associated with the linear classical canonical
transformation

z �→ z = S · z, (21)

induces a corresponding transformation of quantum mechanical operators ẑ by the unitary
metaplectic operator M̂(S) [30],

ẑ �→ M̂(S)ẑM̂(S)† = S · ẑ. (22)

General matrix elements of the operator M̂(S) in position, coherent state and mixed bases
have been given by Littlejohn [30]. Here, we point out that the matrix element between the
fiducial state and the coherent state |z′〉 can be expressed in terms of the matrix P ([30]; [40],
chapter 5)

〈z′|M̂(S, σ )|0〉 = σ√
det[Λ]

exp

[
− 1

4h̄
z̃′ · (1 + P ) · z′

]
. (23)

The (for present purposes irrelevant) sign σ = ±1 is associated with a 2:1 correspondence
between the metaplectic and symplectic groups [30]. Note the appearance in (23) of

√
det[Λ],

closely related to the HK prefactor. When S is the monodromy matrix associated with a
classical trajectory from z → zt , the state M̂(S, σ )|0〉 is the fiducial Gaussian state distorted
by dynamically induced spreading along the trajectory z → zt .

3. Miller’s derivation of the HK propagator revisited

Following Miller, we consider a potentially exact expansion of the quantum state |ψt 〉 evolving
from the initial state |ψ0〉 under the (time-independent) Hamiltonian Ĥ in terms of the
(overcomplete) coherent state basis |z′

t 〉, where the classical phase point z′ propagates to
the phase point z′

t along the classical trajectory determined by the corresponding classical
Hamiltonian H:

|ψt 〉 = 1

(2πh̄)N

∫
d2Nz′|z′

t 〉 ei�(z′
t ;t)/h̄C(z′

t )〈z′|ψ0〉. (24)

An exact expression for |ψt 〉 can in principle be obtained by solving the coupled integro-
differential equations for the coefficients C(zt ) that result when (24) is substituted into the
time-dependent Schrödinger equation [25, 37, 38]

ih̄∂t |ψt 〉 = Ĥ |ψt 〉. (25)

Time evolution under the HK propagator [5] results in an expression for |ψt 〉 very similar
to that in (24),

|ψt 〉HK = 1

(2πh̄)N

∫
d2Nz′|z′

t 〉 ei�(z′
t ;t)/h̄CHK(z′; t)〈z′|ψ0〉, (26)

where the prefactor CHK now has the explicit form

CHK(z′; t) =
√

det[Λ∗] (27)

with Λ the complex N ×N matrix defined in (9b). (We do not explicitly include an additional
phase factor (index) needed to ensure continuity of the square root.) As realized by Miller,
in order to pass from (24) to (26) the coefficient C(zt ) must be considered a functional
of the classical trajectory z → zt only, with a weak dependence on z′

t . Substituting (24)
into the time-dependent Schrödinger equation and taking C and Ċ outside the integral over
z′ then yields an equation of motion for C that turns out to be identical to that of the HK
prefactor (27).
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Here, we give a version of this derivation for general Hamiltonians H(z) that explicitly
and fully exploits the symplectic algebraic properties of the various matrices appearing in the
calculation. Again following Miller, we set |ψ0〉 = |z〉. To facilitate the calculation, we
consider the particular matrix element of the exact propagator

〈zt |ψt 〉 = 1

(2πh̄)N

∫
d2Nz′〈zt |z′

t 〉 ei�(z′
t ;t)/h̄C(z′

t )〈z′|z〉. (28)

The exact solution will satisfy

ih̄
∫

d2Nz′〈zt | d

dt
[|z′

t 〉 ei�(z′
t ;t)/h̄C(z′

t )]〈z′|z〉 =
∫

d2Nz′〈zt |Ĥ |z′
t 〉 ei�(z′

t ;t)/h̄C(z′
t )〈z′|z〉.

(29)

The approximate equation of motion for C(z′
t ) is obtained by assuming that C(z′

t ) is
a slowly varying function of z′

t , and subsequently linearizing the integrand about z,z′ =
z + �z. We therefore write

ih̄Ċ(zt )

∫
d2Nz′〈zt |z′

t 〉 ei�(z′
t ;t)/h̄〈z′|z〉 + ih̄C(zt )

∫
d2Nz′〈zt | d

dt
[|z′

t 〉 ei�(z′
t ;t)/h̄]〈z′|z〉

	 C(zt )

∫
d2Nz′〈zt |Ĥ |z′

t 〉 ei�(z′
t ;t)/h̄〈z′|z〉. (30)

We now derive the equation of motion for C(zt ) implied by (30), and show that it is
precisely equivalent to that for the HK prefactor.

3.1. Equation of motion for the HK prefactor

The time derivative of the HK prefactor
√

det[Λ∗] is

d
√

det[Λ∗]

dt
= 1

2
√

det[Λ∗]

d det[Λ∗]

dt
= 1

2

√
det[Λ∗] tr

[
dΛ∗

dt
Λ∗−1

]
. (31)

To determine dΛ∗/dt , we note that the time evolution of the monodromy matrix S is governed
by the tangent dynamics,

Ṡ = JHS, (32)

where H is the 2N ×2N matrix of second derivatives of the Hamiltonian, Hjk ≡ ∂2H/∂zj∂zk .
We partition H into four N × N matrices,

H =
[
HA HB

HC HD

]
, (33)

following the partitioning of S. Defining complex N × N matrices (cf equation (9))

H� = 1
2 [(HA + HD) + i(HB − HC)] (34a)

H� = 1
2 [(HA − HD) − i(HB + HC)] (34b)

we find

Ṡc ≡ WṠW −1 (35a)

=
[
Λ̇∗ −iΓ̇∗

iΓ̇ Λ̇

]
(35b)

= WJHW −1Sc (35c)

= −
[

iH∗
�Λ∗ + iH∗

�Γ H∗
�Γ∗ + H∗

�Λ
H�Λ∗ + H�Γ −iH�Γ∗ − iH�Λ

]
. (35d)
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The time evolution of Λ∗ and Γ is, therefore, governed by the pair of coupled equations

Λ̇∗ = −i(H∗
�Λ∗ + H∗

�Γ) (36a)

Γ̇ = +i(H�Λ∗ + H�Γ). (36b)

We have

Λ̇∗Λ∗−1 = −i(H∗
� + H∗

�ΓΛ∗−1
) (37)

so that the equation of motion for the HK prefactor becomes

i√
det[Λ∗]

d
√

det[Λ∗]

dt
= 1

2
tr[H∗

� + H∗
�ΓΛ∗−1]. (38)

3.2. Coherent state matrix elements of the Hamiltonian

In order to derive the equation of motion for the approximate prefactor C using equation (30),
we require matrix elements of the Hamiltonian Ĥ between coherent states |zt 〉 and |z′

t 〉 =
|zt + �zt 〉 	 |zt + S�z〉. The expansion of the Hamiltonian operator Ĥ to second order
about the classical phase point zt is (ignoring possible subtleties involving operator ordering)

Ĥ = H(zt ) + Hz · (ẑ − zt ) + 1
2 (ẑ − zt ) · H(zt ) · (ẑ − zt ). (39)

We drop the linear term, as this does not survive integration over �z; matrix elements of the
quadratic term are then
1
2 〈zt |(ẑ − zt ) · H(zt ) · (ẑ − zt )|z′

t 〉
= 1

2 〈zt |z′
t 〉

{
tr[H∗

�] + 1
4�̃zS̃(1 + iJ̃)H(zt )(1 + iJ)S�z

}
. (40)

The first term on the RHS, tr[H∗
�], arises from the noncommutativity of creation and

annihilation operators, while the second term essentially follows from the basic matrix
elements

〈z|(ẑ − z)|z′〉 = 〈z|z′〉 1
2 (1 + iJ)(z′ − z). (41)

We therefore have (keeping in mind that this result is to be integrated over �z)

〈zt |Ĥ |z′
t 〉 	 〈zt |z′

t 〉
{
H(zt ) + 1

2 tr[H∗
�] + 1

8�̃zS̃(1 + iJ̃)H(zt )(1 + iJ)S�z
}
. (42)

3.3. Time derivatives

The time derivative of the action �(z′; t) is

�̇(z′
t ) = −H(z′

t ) + 1
2 z̃′

t · Hz(z
′
t ) (43a)

= −H(zt + S�z) + 1
2 (̃zt + �̃zS̃) · Hz(zt + S�z). (43b)

Expanding �̇ about z, we find that terms quadratic in �z cancel, while linear terms will
vanish upon integration over �z, so that effectively

�̇(z′
t ) 	 −H(zt ) + 1

2 z̃tHz(zt ) (44)

and

ih̄∂t ei�(z′;t)/h̄ 	 +(H(zt ) − 1
2 z̃tHz(zt )) ei�(z′;t)/h̄. (45)
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Direct evaluation of the time derivative of |z′
t 〉 gives

h̄〈zt |∂t |z′
t 〉 = 〈zt |z′

t 〉
[
−1

2
�̃zS̃ · (JHz(zt ) + Ṡ�z) +

i

2
z̃t · (−Hz(zt ) + J Ṡ�z)

]
. (46)

Again discarding terms linear in �z we obtain

ih̄〈zt |∂t |z′
t 〉 	 〈zt |z′

t 〉
[

1

2
z̃t · Hz(zt ) +

i

4
{�̃zS̃J̃HS�z + �̃zS̃HJS�z}

]
. (47)

Note that the terms involving 1
2 z̃t ·Hz(zt ) cancel between (45) and (47). Moreover, the terms

quadratic in �z from (47) combine with those from the matrix element 〈zt |Ĥ |z′
t 〉 (42) to

yield the quadratic form
1
8�̃z · S̃(1 − iJ̃)H(zt )(1 − iJ)S · �z. (48)

3.4. Expanding the integrand

The expression

F = 〈zt |z′
t 〉 ei�(z′;t)/h̄〈z′|z〉 (49)

appears as a factor in the integrand of all the integrals appearing in equation (30). We must
expand F about the initial phase point z, with z′ = z +�z. In keeping with standard practice,
we do not include any terms involving derivatives of monodromy matrix elements [11]. We
have

〈z′|z〉 = exp

[
− 1

4h̄
�̃z · 1 · �z +

i

2h̄
�̃z · Jz

]
, (50a)

〈zt |z′
t 〉 	 exp

[
− 1

4h̄
�̃z · S̃S · �z +

i

2h̄
z̃t ·JS · �z

]
, (50b)

�(z′; t) 	 �(z; t) − 1

2
(̃ztJS − z̃J) · �z, (50c)

so that the linearization of F is simply

F 	 exp

[
i
�(z; t)

h̄

]
exp

[
− 1

4h̄
�̃z ·X · �z

]
. (51)

3.5. Integrating the quadratic form

The integral of the quadratic form (48) is∫
d2N�z exp

[
− 1

4h̄
�̃z · X · �z

]
1

8
�̃zS̃(1 − iJ̃)H(zt )(1 − iJ)S�z

= 2N(2πh̄)N√
det[X]

1

4
tr[S̃(1 − iJ̃)H(zt )(1 − iJ)SX−1]. (52)

Cyclic invariance of the trace implies

tr[S̃(1 − iJ̃)H(zt )(1 − iJ)SX−1] = tr[H(zt )(1 − iJ)SX−1S̃(1 − iJ̃)]. (53)

From (20)

(1 − iJ)SX−1S̃(1 − iJ̃) = −P ∗, (54)
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so that the trace (53) becomes

tr[H(zt )(1 − iJ)SX−1S̃(1 − iJ̃)] = −tr[H(zt )P
∗] (55a)

= tr

[[
HA HB

HC HD

] [
ΓΛ∗−1 iΓΛ∗−1

iΓΛ∗−1 −ΓΛ∗−1

]]
(55b)

= 2 tr[H∗
�ΓΛ∗−1]. (55c)

Using ∫
d2N�z exp

[
− 1

4h̄
�̃z · X · �z

]
= 2N(2πh̄)N√

det[X]
(56)

and rearranging terms in (30), we obtain the equation of motion for the approximate coefficient
C,

i
Ċ

C
= 1

2
tr[H∗

� + H∗
�ΓΛ∗−1], (57)

which is identical with that for
√

det[Λ∗], (38). This completes our derivation of the HK
propagator.

4. Connection between the HK propagator and the TGA

We now show that linearization of the HK propagator yields directly the matrix element of the
semiclassical propagator in the TGA. Consider the general coherent state matrix element of
the HK propagator

〈z′′|ÛHK(t)|z〉 = 1

(2πh̄)N

∫
d2Nz′〈z′′|z′

t 〉
√

det[Λ∗] ei�(z′;t)/h̄〈z′|z〉. (58)

Expanding the exponent of the integrand about z′ = z as above, integrating over the variable
�z ≡ z′ − z, and using (20), we find that the linearized matrix element (58) is identical with
the Littlejohn form of the TGA matrix element [30]

〈z′′|ÛHK(t)|z〉 	 〈z′′|ÛTGA(t)|z〉 (59a)

= 〈z′′|T̂ (zt )M̂(S, σ )T̂ (z)†|z〉 ei�(z;t)/h̄ (59b)

= σ√
det[Λ]

exp

[
− 1

4h̄
(̃z′′ − z̃t ) · (1 + P ) · (z′′ − zt ) +

i

h̄
�(z; t)

]
. (59c)

The form for the propagator (59b) in the TGA describes the wavepacket propagation in
an intuitively appealing way as the following sequence of transformations: first, the initial
coherent state |z〉 is translated by the operator T̂ (z)† from the phase point z to the origin;
next, the metaplectic operator M̂(S, σ ) subjects the wavepacket to the transformation induced
by the linear canonical transformation associated with the monodromy matrix S; finally, the
distorted wavepacket is translated by the operator T̂ (zt ) to the phase point zt , where z → zt

under the classical time evolution. The wavepacket also accumulates the phase �(z; t).
The mixed semiclassical propagator derived by Baranger et al for one-dimensional

systems [14] can be expressed very compactly in terms of the matrix elements of the metaplectic
operator. For an N degree of freedom system we have

〈x|ÛTGA(t)|z〉 =
∫

dNx′〈x|T̂ (zt )|x′〉〈x′|M̂(S, σ )|0〉 ei�(z;t)/h̄. (60)
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Using the matrix elements [30]

〈x′|M̂(S, σ )|0〉 = 1

(πh̄)N/4

σ√
det[A + iB]

exp

[
− 1

2h̄
x̃′ ·Y · x′

]
, (61)

where the complex symmetric matrix Y = (D − iC)(A + iB)−1, and

〈x|T̂ (zt )|x′〉 = δ(x − x′ − qt ) exp
[ i

2h̄
pt · (x + x′)

]
, (62)

we obtain a compact expression for the TGA propagator matrix element

〈x|ÛTGA(t)|z〉 = 1

(πh̄)N/4

σ√
det[A + iB]

× exp

[
− 1

2h̄
(x̃ − q̃t ) · Y · (x − qt ) +

i

h̄
pt ·

(
x − 1

2
qt

)
+ i�(z; t)

]
. (63)

To see that (63) is essentially equivalent to the propagator obtained by Baranger et al for
N = 1, note that in the one-dimensional case the ratio γ defined in [14] is

γ = �∗

�
= (A − D) + i(B − C)

(A + D) + i(B − C)
, (64)

where �,�,A,B,C and D are now scalars, so that the quantity (1−γ )/(1+γ ) in the exponent
of the Baranger propagator is just a one-dimensional version of Y ,

1 − γ

1 + γ
= (D − iC)(A + iB)−1. (65)

As � is equal to the phase SH + (p′q ′ − prqr)/2 defined in [14], our result (63) is equivalent
to equation (4.29) of Baranger et al except for two (related) differences. Thus, an extra
contribution to the phase, iIr/h̄, with

Ir = h̄

2

∫
dt[Hqq + Hpp], (66)

appears in Baranger’s propagator. The presence of this extra phase is associated with the
use of the Gaussian averaged Hamiltonian H in the computation of the action, rather than
the Weyl symbol of Ĥ (essentially the classical Hamiltonian HC). Both of these subtle but
important differences arise when the semiclassical propagator is derived by careful analysis
of the coherent state path integral [14]. The properties of the Baranger version of the TGA
propagator have recently been studied by Child et al [43].

5. Summary and conclusion

By exploiting the underlying symplectic structure of the problem, including the known
expressions for matrix elements of metaplectic operators associated with the monodromy
matrices of classical trajectories [30, 40], we have been able to present a concise derivation
(following Miller [34]) of the semiclassical Herman–Kluk propagator [5]. Moreover, using
the matrix elements of the metaplectic operator we are able to straightforwardly demonstrate
that the propagator obtained by Baranger et al for one-dimensional systems [14] is, apart from
a couple of subtle differences, identical with the expression for the propagator in the thawed
Gaussian approximation given by Littlejohn [30].
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